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Objectives

• ISL was contracted by the DWG to do four 
ORH stock assessments for presentation at the 
2014 Plenary: ESCR, NWCR, ORH7A, MEC

• Project objectives:

– Review available data and identify data that needs 
to be prepared prior to stock assessment

– Prepare available data and develop preliminary 
models to the end of 2012-13

– Incorporate new data as it becomes available and 
assess stock status to the end of 2013-14

– Prepare suitable documentation
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General issues

• Conceptual model of orange roughy

• Can we get defensible biomass indices from:

– CPUE?

– Egg surveys?

– Trawl surveys?

– Acoustic surveys?

• Spawning biomass vs mature biomass
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Conceptual model of orange roughy

• Movement:

– Individual fish have a “home territory” (which is small 

compared to the spatial extent of the stock)

– Mature fish may undertake an annual spawning 

migration but otherwise they are not highly mobile

• Maturity and spawning:

– Not all (transition-zone) mature fish spawn each year

– It is the older (and larger) mature fish that spawn

• Prime habitat occupied by older (and larger) fish
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Defensible biomass indices: CPUE?

• CPUE is problematic (when used to provide 
abundance indices) for any species

• Highly problematic if the species is not very 
mobile:

– Makes the species susceptible to localised and 
serial depletion

– ORH have a history of concentrated catches in 
specific areas:

• CPUE may measure local abundance but is unlikely to 
be measuring stock-wide abundance (unless there is 
simultaneous wide-spread fishing)
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Defensible biomass indices: egg surveys?

• Daily method: measures number of eggs released 
on a particular day during the spawning season
– High CVs expected because of patchy nature of eggs

– Potential biases due to inadequate areal coverage and 
problems estimating egg mortality

• Scaled up from an egg estimate to female 
biomass, then to spawning biomass, then to 
transition-zone-mature biomass

• Each survey needs to be considered individually 
(none were found to be reliable for these orange 
roughy stocks; included in past assessments as 
absolute biomass and had high CVs; it was hoped 
they didn’t make a difference)
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Defensible biomass indices: trawl surveys?

• If the same vessel, gear, time of year, and area then they 
should provide defensible indices (i.e., constant q)

• Problems if the surveys occur during the spawning season 
and fish are pluming:
– Requires constant proportion of biomass in the plumes each 

year

• Problems if the survey area contain hills:
– Probably different availability and vulnerability for fish 

associated with hills compared to those associated with flat

– Not a problem if most of the biomass is associated with the flat 
(or a constant proportion of biomass associated with the hills)

• If obvious problems, with an otherwise consistent time 
series, then process error CV of 20% added to sampling CV
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Defensible biomass indices: acoustic surveys?

• Low ORH target strength makes biomass estimation 
from mixed species marks highly problematic

• ORH biomass estimates from wide-area acoustic 
surveys with mixed-species layers cannot be 
considered reliable

• Pure or near-pure ORH marks are needed

• Hill surveys problematic because of possible large 
dead-zones

• Need to consider each survey individually (surveys of 
spawning plumes used; wide-area surveys not used; 
surveys of hills using hull-mounted transducers not 
used in base models).
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Spawning biomass vs mature biomass

• Maturity has been estimated from the transition-zone on otoliths

• Not all transition-zone mature fish spawn

• Spawning measured from gonad stage and/or presence on 
spawning ground

• Strong evidence that the spawning fish are an older-age subset of 
the mature fish. Corollary:
– If there is a spawning fishery then spawning proportion will be 

expected to change over time (i.e.,  a constant spawning proportion is 
untenable)

• It is much easier to measure spawning biomass than it is to 
measure transition-zone mature biomass

• Stock assessment models should equate spawning with maturity 
and ignore transition-zone maturity (which is not needed for stock 
assessment).
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2014 ORH general model structure

• Single area, single sex, age-structured with 
maturity in the partition

• Multiple fisheries modelled only if necessary 
and/or convenient:

– MEC: south fishery catches smaller fish than north 
fishery (estimate fishery specific selectivities)

– ESCR: catch histories and length frequencies 
already developed by Dunn for three fisheries 
(estimate fishery specific selectivities)

• Spawning equated with maturity (100% 
spawning)
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Bayesian estimation
• Each estimated parameter must be given a prior

distribution (which incorporates information from 

data not available to the model)

• A joint posterior distribution is estimated for the 

parameters (which updates the priors with the 

data – our best estimate of “truth” given the 

model structure, the priors, and the data)

• A (marginal) posterior can be calculated for any 

derived parameter of interest (e.g., current stock 

status)

• The median (of each marginal posterior) is used 

as the “best” point estimate



MPD estimates
• The MPD is the mode of the joint posterior 

distribution:
– Gives rise to MPD estimates of derived parameters of 

interest

– These are estimates associated with the “best fit”

– Very useful to see if the model “makes sense” (fits, 
likelihood profiles)

– MPD estimates may or may not be close to the medians of 
the posteriors

– In the 2014 ORH assessments the base-model MPD 
estimate of stock status was always smaller than the 
MCMC estimate

– In each case, the main cause were differences in MPD and 
MCMC YCS estimates with the MPD YCS estimates 
sometimes being atypical of the posterior distribution



Model runs
• Lots and lots of MPD runs:

– Look at fits

– Look at likelihood profiles

– Check data weighting (use/in-spirit-of Francis 2011)

– Decide on base model

– Sensitivities: estimate M, lowM, highM, low mean q prior, 
high mean q prior, deterministic recruitment, half/double 
effective Ns for AFs and/or LFs, half/double recent acoustic 
observations, other sensitivity runs specific to the stock

• MCMC runs:
– Base

– Estimate M

– LowM-Highq and HighM-Lowq (deviate by 20% from base)

– Other sensitivity runs specific to the stock



Revised ORH TS prior (1)

• Pre-2014 prior used results from Macaulay et 

al. (2013, and earlier, from AOS), Kloser and 

Horne (2003), Coombs and Barr (2007), and 

McClatchie et al. (1999) (slope = 16.15)

• Further AOS results now available from Kloser 

et al. (2013)

• Revised prior uses just the AOS results and the 

McClatchie et al. (1999) slope
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Revised ORH TS prior (2)

Source TS (dB) Range (dB)

Macaulay et al. (2013) -52.0 -53.3 to -50.9

Kloser et al. (2013) -51.1

With tilt angle distributions -52.2 to -50.7
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Table: Estimated ORH TS from AOS measurements. The 

Macaulay range is a 95% CI. The Kloser range comes from 

assumed normal tilt angle distributions from mean = 0 to 30 

degrees (sd = 15 degrees). All estimates are for fish with 

mean length 33.9 cm

Given a mean of -52.0 dB, a spread of ± 1.5 dB covers 

both ranges 



Prior for acoustic q (surveying “most” SSB)

• Assume only two potential biases for the acoustic survey:

– Error in assumed length-TS relationship

– Proportion of the total SSB in the plumes/marks surveyed (p)

– Only two sources needed since the last one is just an 

educated guess (i.e., no point putting in lots of minor sources)

• Informed prior needed for q:

– E(X) = qB, q = p × (tstrue / ts)

• We have a prior for the ratio of true ts to assumed ts: 

– LN(-σ2/2, σ = 0.11)

• For p use a Beta distribution:

– p ~ B(8,2)

– E(p) = 8/(8+2) = 0.8 (i.e., “most” = 80%)

• q ~ N or LN(mean = 0.8, cv = 0.19), bounded: [0.1, 1.5]
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Prior for acoustics q (most=0.8)
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YCS parameterisation and priors

• In 2013 MEC assessment, Haist parameterisation:

– Free parameters: yi

– YCSi = yi / mean(yj)

– Uniform prior on the yi

– Average-to-1 penalty on yi to keep the free parameters and 
YCS not too different

• Lognormal prior not used because of the relatively 
large influence of the priors on the estimate of B0 (i.e., 
from looking at a likelihood profile):

– Mode of lognormal for high rsd (σ=1.1) is much less than 1

– Neg. log. likelihood gets a big negative contribution from yi

near the mode (which are then rescaled to give YCS)
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A different approach for the YCS priors

• The uniform prior can lead to rather wild 
estimates of YCS (especially for MPDs):

– The MPD estimate will often go off to a bound even 
with very little information to support very large/small 
YCS (i.e., fitting a bump somewhere in an LF)

– It is desirable to have some curvature in the prior to 
stop the wild MPD estimates (and probably help 
MCMC convergence as well)

– Might as well put the mode of the prior at 1 so that in 
the absence of information the MPD estimate is 1 
without the need for rescaling (i.e. the yi and the YCSi

are not very different – if the mode is well-defined)
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A single parameter defines the prior on each yi
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Reference points and fishing intensity

• Target biomass range 30-40% B0

• Corresponding fishing intensities are U30%B0 and U40%B0

(fish at Ux%B0 forever with deterministic recruitment 
and equilibrium SSB = x% B0; Ux%B0 has an ESD of x%)

• Fishing intensity can be put on a 100 – ESD scale (E.g. 
a fishing intensity of “70%” is equivalent to U30%B0)

• MCMC estimate of deterministic long-term yield (by 
determining U35%B0 and associated yield for each 
posterior sample)

• MCMC estimate of deterministic MSY, BMSY (by 
determining yield and ESD curves for each posterior 
sample)
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NWCR (a single fishery): MCMC estimates of ESD
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NWCR: MCMC deterministic yield curve
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MEC (two fisheries; proportions in most recent period): 

converting ESD to “exploitation rate” (adjusted CASAL total U) 
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Results

• NWCR

– MPD fits and estimates

– MCMC results

• ESCR

– MCMC results

• ORH7A

– MCMC results

• MEC

– A snail trail



NWCR, base model: MPD fits (acoustics)
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NWCR, base model: MPD fits (rest)
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NWCR, base model: estimates
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NWCR, base model: sensitivities
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NWCR, base model: SSB trajectory (%B0) (95% CI)
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NWCR, base model: (true) YCS estimates (95% CI)
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NWCR: MCMC sensitivities
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B0 (000 t) 95% CI B2014 (%B0) 95% CI

Base 66 61-76 37 30-46

Extra 64 60-69 34 29-41

Est M (0.041) 68 61-78 34 26-45

Extra & Est M 

(0.040)

67 60-74 32 25-40

LowM-Highq 68 64-76 28 23-36

HighM-Lowq 66 59-78 46 38-56



NWCR, base model, snail trail (MCMC medians)
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ESCR, base model: stock status trajectory (95% CI)
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ESCR, base model: YCS (true) (95% CI)
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ESCR, base model: maturity and fishing sels. (95% CI)
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ESCR, base model: acoustic residuals
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ESCR: three additional runs

• Alternative assumptions about the Rekohu 

plume:

– Always existed: one of three spawning sites, each 

with a characteristic age structure (Always)

– First came into existence in 2007 (Rekohu2007)

– First came into existence in 2010 (Rekohu2010)

– Not present in 2002; may have existed from 2003 

onwards (Base)
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Consequences for old plume acoustic time series

• Always: the old-plume time series is a relative 

index of age-selected spawning biomass (as are 

the 2 crack estimates and the 3 Rekohu estimates 

– each site has its own age-selectivity)

• Rekohu2007: the old-plume indexes SSB from 

2002-2006 (constant q over this period)

• Rekohu2010: the old-plume indexes SSB from 

2002-2009 (constant q over this period)

• Base: apriori, the old-plume time series contains 

little reliable trend information



MCMC runs (medians and 95% CIs)

Run Maturity 

(a50, ato95)

B0 (000 t) B2014 (000 t) B2014 (%B0)

Base 41 12 317     281-352 93   77-112 30     25-34

LowM-Highq 40    12 343     318-369 77     63-93 22     19-26

HighM-Lowq 41    12 309     279-345 116   97-139 38     32-43

Rekohu2007 41 12 311     281-343 80     67-96 26     22-30

Rekohu2010 38     7 319     288-349 61     49-76 19     16-23

Always 36      6 331     304-361 55     44-70 17     14-20
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• Is it credible to assume the Rekohu plume 

always existed?

• Could the plume have started in 2010 and then 

been observed to have about 30,000 t of 

biomass in 2011? (short answer: No)



ESCR: Always: SSB by area (95% CI)
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ESCR: MCMC snail trail (medians)
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ORH7A, base: MCMC stock status trajectory (95% CI)
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ORH7A, base model: YCS (true) (95% CI)
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ORH7A, base: MCMC snail trail (medians)
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MEC, base model: snail trail (MCMC medians)
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